

Saraswati Education Society's YADAVRAO TASGAONKAR INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, New Delhi, DTE (EN/ME/MB/MC-3147), Recognized by Govt. of Maharashtra, Affiliated to University of Mumbai)

DEPARTMENT OF MECHANICAL ENGINEERING

2.6.1. Programme Outcomes (POs) and Course Outcomes (COs) for all Programmes offered by the institution are stated and displayed on website and attainment of POs and COs are evaluated (SEM - III - C - SCHEME)

SEMESTER	COURSE	COURSE NAME	COURSE	COURSE OUTCOMES
	CODE		ID	333.32 33.12
			CO 1	Apply the concept of Laplace transform to solve the real integrals in engineering problems.
			CO 2	Apply the concept of inverse Laplace transform of various functions in engineering problems
			CO 3	Expand the periodic function by using Fourier series for real life problems and complex engineering problems.
ш	MEC301	Engineering Mathematics-III	CO 4	Find orthogonal trajectories and analytic function by using basic concepts of complex variable theory.
			CO 5	Apply Matrix algebra to solve the engineering problems.
			CO 6	Solve Partial differential equations by applying numerical solution and analytical methods for one
				dimensional heat and wave equations
			CO 1	Demonstrate fundamental knowledge about various types of loading and stresses induced
			CO 2	Draw the SFD and BMD for different types of loads and support conditions.
			CO 3	Analyses the bending and shear stresses induced in beam.
ш	MEC302	Strength of Materials	CO 4	Analyses the deflection in beams and stresses in shaft.
			CO 5	Analyses the stresses and deflection in beams and Estimate the strain energy in mechanical elements.
			CO 6	Analyses buckling phenomenon in columns.
			CO 1	Illustrate principles of forming processes.
			CO 2	Demonstrate applications of various types of welding processes
			CO 3	Differentiate chip forming processes such as turning, milling, drilling, etc
			CO 4	Illustrate the concept of producing polymer components and ceramic components
111	MEC303	Production Processes	CO 5	Illustrate the concept of producing polymer components and ceramic components.
		110063363	CO 6	Illustrate principles and working of non- traditional manufacturing
			CO 7	Understand the manufacturing technologies enabling Industry 4.0

Saraswati Education Society's YADAVRAO TASGAONKAR INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, New Delhi, DTE (EN/ME/MB/MC-3147), Recognized by Govt. of Maharashtra, Affiliated to University of Mumbai)

DEPARTMENT OF MECHANICAL ENGINEERING

2.6.1. Programme Outcomes (POs) and Course Outcomes (COs) for all Programmes offered by the institution are stated and displayed on website and attainment of POs and COs are evaluated (SEM - III - C - SCHEME)

			CO 1	Identify the various classes of materials and comprehend their properties.
		Materials and	CO 2	Apply phase diagram concepts to engineering applications.
111	MEC304	Metallurgy	CO 3	Apply particular heat treatment for required property development
			CO 4	Identify the probable mode of failure in materials and suggest measures to prevent them
			CO 5	Choose or develop new materials for better performance
			CO 6	Decide an appropriate method to evaluate different components in service
			CO 1	Demonstrate application of the laws of thermodynamics to a wide range of systems
			CO 2	Compute heat and work interactions in thermodynamic systems
Ш	MEC305	Thermodynamics	CO 3	Demonstrate the interrelations between thermodynamic functions to solve practical problems.
			CO 4	Compute thermodynamic interactions using the steam table and Mollier chart
			CO 5	Compute efficiencies of heat engines, power cycles.
			CO 6	Apply the fundamentals of compressible fluid flow to the relevant systems

SEMESTER	COURSE	COURSE NAME	COURSE	COURSE OUTCOME
	CODE		ID	
IV	MEC401	Engineering Mathematics-IV	CO 1	Apply the concept of Vector calculus to evaluate line integrals, surface integrals using Green's theorem, Stoke's theorem & Gauss Divergence theorem.
			CO 2	Use the concepts of Complex Integration for evaluating integrals, computing residues & evaluate various contour integrals.
			CO 3	Apply the concept of Correlation, Regression and curve fitting to the engineering problems in data science.
			CO 4	Illustrate understanding of the concepts of probability and expectation for getting the spread of the data and distribution of probabilities.
			CO 5	Apply the concept of probability distribution to

Saraswati Education Society's YADAVRAO TASGAONKAR INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, New Delhi, DTE (EN/ME/MB/MC-3147), Recognized by Govt. of Maharashtra, Affiliated to University of Mumbai)

DEPARTMENT OF MECHANICAL ENGINEERING

2.6.1. Programme Outcomes (POs) and Course Outcomes (COs) for all Programmes offered by the institution are stated and displayed on website and attainment of POs and COs are evaluated (SEM - III - C - SCHEME)

	2022 REGULATION-COURSE OUTCOMES				
				engineering problems & testing hypothesis of small samples using sampling theory.	
			CO 6	Apply the concepts of parametric and nonparametric tests for analyzing practical problems	
			CO 1	Define properties of fluids, classify fluids and evaluate hydrostatic forces on various surfaces.	
			CO 2	Illustrate understanding ofdimensional analysis of Thermal and Fluid systems.	
			CO 3	Differentiate velocity potential function and stream function and solve for velocity and acceleration of a fluid at a given location in a fluid flow.	
IV	MEC402	Fluid Mechanics	CO 4	Formulate and solve equations of the control volume for fluid flow systems and Apply Bernoulli's equation to various flow measuring devices	
			CO 5	Calculate pressure drop in laminar and turbulent flow, evaluate major and minor losses in pipes.	
			CO 6	Calculate resistance to flow of incompressible fluids through closed conduits and over surfaces.	
			CO 1	Identify various components of mechanisms	
			CO 2	Develop mechanisms to provide specific motion	
			CO 3	Draw velocity and acceleration diagrams of various mechanisms	
IV	MEC403	Kinematics of Machinery	CO 4	Choose a cam profile for the specific follower motion	
			CO 5	Predict condition for maximum power	
			CO 6	Illustrate requirements for an interference-free gear pair.	
			CO 1	Identify suitable computer graphics techniques for 3D modeling.	
			CO 2	Transform, manipulate objects & store and	
		CAD/CAM		manage data	
IV	MEC404	CAD/CAM	CO 3		
IV	MEC404	CAD/CAM		manage data Transform, manipulate objects & store and	
IV	MEC404	CAD/CAM	со з	manage data Transform, manipulate objects & store and manage data. Create the CAM Tool path for specific given	
IV	MEC404	CAD/CAM	CO 3	manage data Transform, manipulate objects & store and manage data. Create the CAM Tool path for specific given operations. Build and create data for 3D printing of any given object using rapid prototyping and tooling	

(Approved by AICTE, New Delhi, DTE (EN/ME/MB/MC-3147), Recognized by Govt. of Maharashtra, Affiliated to University of Mumbai)

DEPARTMENT OF MECHANICAL ENGINEERING

2.6.1. Programme Outcomes (POs) and Course Outcomes (COs) for all Programmes offered by the institution are stated and displayed on website and attainment of POs and COs are evaluated (SEM - III - C - SCHEME)

IV		Industrial Electronics		applications of power electronic switches
			CO 2	Identify rectifiers and inverters for dc and ac motor speed control.
	MEC404		CO 3	Develop circuits using OPAMP and Timer IC 555.
			CO 4	Identify digital circuits for industrial applications
			CO 5	Demonstrate the knowledge of basic functioning of microcontrollers.
			CO 6	Analyze speed-torque characteristics of electrical machines for speed control.