

DEPARTMENT OF MECHANICAL ENGINEERING 2.6.1. Programme Outcomes (POs) and Course Outcomes (COs) for all Programmes offered by the institution are stated and displayed on website and attainment of POs and COs are evaluated (SEM – V – C – SCHEME)

SEMESTER	COURSE CODE	COURSE NAME	COURSE ID	COURSE OUTCOME
V	MEC501	Mechanical Measurements and Controls	CO 1	Handle, operate and apply the precision measuring instruments / equipment's.
			CO 2	Analyze simple machined components for dimensional stability & functionality.
			CO 3	Classify various types of static characteristics and types of errors occurring in the system.
			CO 4	Classify and select proper measuring instrument for displacement, pressure, flow and temperature measurements.
			CO 5	Design mathematical model of system/process for standard input responses and analyse error and differentiate various types of control systems and time domain specifications
			CO 6	Analyse the problems associated with stability
v	MEC502 Thermal Engineering		CO 1	Analyze the three modes of heat transfer in engineering application.
			CO 2	Analyze the three modes of heat transfer in engineering application
			CO 3	Analyze performance parameters of different types of heat exchangers.
			CO 4	Identify and analyze the Transient heat Transfer in engineering applications.
			CO 5	Explain construction and working of different components of internal combustion engines.
			CO 6	Explain construction and working of different components of internal combustion engines.
			CO 1	Demonstrate working Principles of different types of governors and Gyroscopic effects on the mechanical systems.
v			CO 2	Illustrate basic of static and dynamic forces
	MEC503	Dynamics of Machinery	CO 3	Determine natural frequency of element/system.

DEPARTMENT OF MECHANICAL ENGINEERING

2.6.1. Programme Outcomes (POs) and Course Outcomes (COs) for all Programmes offered by the institution are stated and displayed on website and attainment of POs and COs are evaluated (SEM – V – C – SCHEME)

		2022 REGULATION-C	JUKSE OUTCO	
			CO 4	Determine vibration response of
				mechanical elements / systems
			CO 5	Design vibration isolation
				system for a specific application
			CO 6	Demonstrate basic concepts of
				balancing of forces and couples
			60 1	Solve differential equations
			CO 1	using weighted residual
		Finite Element Analysis		methods
v	MECEOA			Develop the finite element
v	MEC504		CO 2	equations to model engineering
				problems governed by second
				order differential equations.
				Apply the basic finite element
			CO 3	formulation techniques to solve
				engineering problems by using
				one dimensional elements
				Apply the basic finite element
			CO 4	formulation techniques to solve engineering problems by using
				two dimensional elements.
				Apply the basic finite element
				formulation techniques to find
			CO 5	natural frequency of single
				degree of vibration system.
				Use commercial FEA software,
			CO 6	to solve problems related to
				mechanical engineering.
				Identify the types of
		Optimization Techniques		optimization problems and
			CO 1	apply the calculus method to
				single variable
				problems.
			CO 2	Formulate the problem as
				Linear Programming problem
V	MEDLO5011			and analyse the sensitivity of a
-				decision variable.
			СО 3	Apply various linear and non-
				linear techniques for problem
				solving in various domain.
				Apply multi-objective decision
				making methods for problem in
		CO 4	manufacturing environment and	
				other domain.
				Apply multi criterion decision
			CO 5	making methods for problem in
				manufacturing environment and
				other domain
				Apply Design of Experiments
			CO 6	Apply Design of Experiments

SEMESTER COURSE COURSE NAME COURSE COURSE OUTCOME	
---	--

DEPARTMENT OF MECHANICAL ENGINEERING

2.6.1. Programme Outcomes (POs) and Course Outcomes (COs) for all Programmes offered by the institution are stated and displayed on website and attainment of POs and COs are evaluated (SEM – V – C – SCHEME)

	CODE		ID	
			CO 1	Use design data beek/standard codes to
				Use design data book/standard codes to standardise the designed dimensions
VI	MECCOL	Machine Design	CO 2	Design Knuckle Joint, cotter joint and Screw Jack.
	MEC601		CO 3	Design shaft under various conditions and couplings
			CO 4	Select bearings for a given applications from the manufacturers catalogue.
			CO 5	Select and/or design belts and flywheel for given applications
			CO 6	Design springs, clutches and brakes
			CO 1	Define various parameters associated with steam generators and turbo machines.
			CO 2	Identify various components and mountings of steam generators with their significance.
		Turbo Machinery	CO 3	Identify various turbo machines and explain their significance.
VI	MEC602		CO 4	Apply principles of thermodynamics and fluid mechanics to estimate various parameters like mass flow rate power, torque, efficiency, temperature, etc.
			CO 5	Evaluate performance of SG and Turbo machines and apply various techniques to enhance performance
			CO 6	Evaluate various phenomena related to performance like cavitation, choking, surging.
			CO 1	Illustrate the fundamental principles and applications of refrigeration and air conditioning systems
		Heating,	CO 2	Identify various HVAC&R components
VI	MEC603	Ventilation, Air Conditioning	CO 3	Evaluate performance of various refrigeration system
		and Refrigeration	CO 4	Estimate cooling and heating loads for an air- conditioning system.
			CO 5	Select air handling unit & design air distribution system
			CO 6	Apply the knowledge of HVAC for the sustainable development of refrigeration and air-conditioning systems.
			CO 1	Demonstrate understanding of fundamentals of industrial automation and AI.
			CO 2	Design & develop pneumatic / hydraulic circuits.

DEPARTMENT OF MECHANICAL ENGINEERING

2.6.1. Programme Outcomes (POs) and Course Outcomes (COs) for all Programmes offered by the institution are stated and displayed on website and attainment of POs and COs are evaluated (SEM – V – C – SCHEME)

VI	MEC604	Automation and Artificial Intelligence	CO 3	Design and develop electropneumatic circuits and PLC ladder logics.
			CO 4	Demonstrate understanding of robotic control systems and their applications.
			CO 5	Demonstrate understanding of various AI and machine learning technologies.
		Press Tool Design	CO 1	Demonstrate various press working operations for mass production of sheet metal parts
VI	MEDLO6021		CO 2	Identify press tool requirements to build concepts pertaining to design of press tools
			CO 3	Prepare working drawings and setup for economic production of sheet metal components
			CO 4	Select suitable materials for different elements of press tools
			CO 5	Illustrate the principles and blank development in bent & drawn components
			CO 6	understand safety aspects and automation in press working.